python - Pandas: iteratively concatenate columns stored in a dictionary of dataframes -
suppose have dictionary of pandas
dataframes keys 0, 1, 2, ..., 999
, , values dataframes (test_df
):
b c 0 1.438161 -0.210454 -1.983704 1 -0.283780 -0.371773 0.017580 2 0.552564 -0.610548 0.257276 3 1.931332 0.649179 -1.349062 4 1.656010 -1.373263 1.333079 5 0.944862 -0.657849 1.526811
say index means nothing you, , want create new dataframe columns a
, b
concatenated:
mydf=pd.concat([test_df[0]['a'],test_df[0]['b']], axis=1, keys=['a','b'])
now, can use line inside loop iterates on keys in dictionary of dataframes?
if not, way of doing this? result dataframe 2 columns, a
, b
, , 6x1000
rows. index column therefore go 0
5999
.
if df_dic
dictionary, can do:
pd.concat([df[['a', 'b']] df in df_dic.values()]).reset_index(drop=true)
here result looks if df_dic
contains 2 key-value pairs:
Comments
Post a Comment